Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Generalized Bose-gas condensation model for Tc in multi-dimensional superconductivity

Identifieur interne : 002156 ( Main/Exploration ); précédent : 002155; suivant : 002157

Generalized Bose-gas condensation model for Tc in multi-dimensional superconductivity

Auteurs : Mario Rabinowitz [États-Unis]

Source :

RBID : ISTEX:FDFD3B81C079C7ABC9D400C8A4B2D36F78A1DDE2

English descriptors

Abstract

Abstract: Strong quantum interaction in a Bose-Einstein gas is sufficient to derive reasonable estimates of Tc, the energy gap, and the coherence length for all classes of superconductors such as the ceramic oxides, the metallics, heavy-Fermion metals, metallic hydrogen, and neutron stars for 3-dimensional, quasi-2 and quasi- 1 dimensional states. For the ceramic oxides this yields 10K, 40K, and 300K in 3, Q2, and Q1 dimensions. Interpreting the ceramic oxide case as one in which the interchain interactions are equal to the intrachain interactions, leads to Tc = (Tc1 Tc2)12 = (300K × 40K)12 = 110K as the approximate transition temperature for these materials when there is clearly a combined linear and planar structure. It is noteworthy that without specifying a coupling mechanism or coupling strength, this general model does well in calculating coherence lengths, transition temperatures, and coupling strengths over nine orders of magnitude (1K to 109K and meV to MeV) from the heavy Fermion metals to neutron stars.

Url:
DOI: 10.1016/0921-4534(89)91011-3


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Generalized Bose-gas condensation model for Tc in multi-dimensional superconductivity</title>
<author>
<name sortKey="Rabinowitz, Mario" sort="Rabinowitz, Mario" uniqKey="Rabinowitz M" first="Mario" last="Rabinowitz">Mario Rabinowitz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:FDFD3B81C079C7ABC9D400C8A4B2D36F78A1DDE2</idno>
<date when="1989" year="1989">1989</date>
<idno type="doi">10.1016/0921-4534(89)91011-3</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-C70ZVMB4-J/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000668</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000668</idno>
<idno type="wicri:Area/Istex/Curation">000668</idno>
<idno type="wicri:Area/Istex/Checkpoint">000E77</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000E77</idno>
<idno type="wicri:doubleKey">0921-4534:1989:Rabinowitz M:generalized:bose:gas</idno>
<idno type="wicri:Area/Main/Merge">002260</idno>
<idno type="wicri:Area/Main/Curation">002156</idno>
<idno type="wicri:Area/Main/Exploration">002156</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Generalized Bose-gas condensation model for Tc in multi-dimensional superconductivity</title>
<author>
<name sortKey="Rabinowitz, Mario" sort="Rabinowitz, Mario" uniqKey="Rabinowitz M" first="Mario" last="Rabinowitz">Mario Rabinowitz</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Electric Power Research Institute, Palo Alto</wicri:cityArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Physica C: Superconductivity and its applications</title>
<title level="j" type="abbrev">PHYSC</title>
<idno type="ISSN">0921-4534</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1989">1989</date>
<biblScope unit="volume">162–164</biblScope>
<biblScope unit="supplement">P1</biblScope>
<biblScope unit="page" from="249">249</biblScope>
<biblScope unit="page" to="250">250</biblScope>
</imprint>
<idno type="ISSN">0921-4534</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0921-4534</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>2abc</term>
<term>Approximate transition temperature</term>
<term>Ashcroft</term>
<term>Astrophys</term>
<term>Bose</term>
<term>Ceramic oxide</term>
<term>Ceramic oxide case</term>
<term>Ceramic oxides</term>
<term>Charge carrier</term>
<term>Coherence</term>
<term>Coherence length</term>
<term>Coherence lengths</term>
<term>Condensation model</term>
<term>Conduction electrons</term>
<term>Critical temperatures</term>
<term>Debroglie</term>
<term>Debroglie wavelength</term>
<term>Different classes</term>
<term>Different dimensionalities</term>
<term>Dimensional states</term>
<term>Dimensionality</term>
<term>Effective mass</term>
<term>Electron pairing mechanisms</term>
<term>Elsevier</term>
<term>Elsevier science publishers</term>
<term>Fermi</term>
<term>Fermi energy</term>
<term>Fermi level</term>
<term>Fermion</term>
<term>First objective</term>
<term>General model</term>
<term>Generalized condensation model</term>
<term>Ginzburg</term>
<term>Heavy fermion metals</term>
<term>Hermann</term>
<term>Incremental energy</term>
<term>Interchain</term>
<term>Interchain interactions</term>
<term>Interparticle</term>
<term>Interparticle spacing</term>
<term>Intq</term>
<term>Intrachain</term>
<term>Intrachain interactions</term>
<term>Jaffe</term>
<term>Literature value</term>
<term>Lower dimensions</term>
<term>Metallic hydrogen</term>
<term>Metallic supercond</term>
<term>Multiple occupancy</term>
<term>Neutron</term>
<term>Neutron star</term>
<term>Neutron stars</term>
<term>Number density</term>
<term>Oxide</term>
<term>Pairing</term>
<term>Palo alto</term>
<term>Particle pair</term>
<term>Particle pairs</term>
<term>Phys</term>
<term>Physica</term>
<term>Planar structure</term>
<term>Power research institute</term>
<term>Quasi</term>
<term>Rabinowitz</term>
<term>Rabinowltz</term>
<term>Reasonable estimates</term>
<term>Rott</term>
<term>Second object</term>
<term>Sheng</term>
<term>Space phys</term>
<term>Strong interaction</term>
<term>Strong quantum effects</term>
<term>Strong quantum interaction</term>
<term>Supercond</term>
<term>Superconducting</term>
<term>Superconducting materials</term>
<term>Superconductivity</term>
<term>Superconductivity mario rabinowltz</term>
<term>Superconductors</term>
<term>Theo</term>
<term>Thermal equilibrium</term>
<term>Upper limit</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Strong quantum interaction in a Bose-Einstein gas is sufficient to derive reasonable estimates of Tc, the energy gap, and the coherence length for all classes of superconductors such as the ceramic oxides, the metallics, heavy-Fermion metals, metallic hydrogen, and neutron stars for 3-dimensional, quasi-2 and quasi- 1 dimensional states. For the ceramic oxides this yields 10K, 40K, and 300K in 3, Q2, and Q1 dimensions. Interpreting the ceramic oxide case as one in which the interchain interactions are equal to the intrachain interactions, leads to Tc = (Tc1 Tc2)12 = (300K × 40K)12 = 110K as the approximate transition temperature for these materials when there is clearly a combined linear and planar structure. It is noteworthy that without specifying a coupling mechanism or coupling strength, this general model does well in calculating coherence lengths, transition temperatures, and coupling strengths over nine orders of magnitude (1K to 109K and meV to MeV) from the heavy Fermion metals to neutron stars.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Rabinowitz, Mario" sort="Rabinowitz, Mario" uniqKey="Rabinowitz M" first="Mario" last="Rabinowitz">Mario Rabinowitz</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002156 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002156 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:FDFD3B81C079C7ABC9D400C8A4B2D36F78A1DDE2
   |texte=   Generalized Bose-gas condensation model for Tc in multi-dimensional superconductivity
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021